Abstract

We mainly focus on regression estimation in a longitudinal study with nonignorable intermittent nonresponse and dropout. To handle the identifiability issue, we take a time-independent covariate as nonresponse instrument which is independent of nonresponse propensity conditioned on other covariates and responses to ensure the identifiability of nonresponse propensity. The nonresponse propensity is assumed to be a parametric model, and the corresponding parameters are estimated by using the generalized method of moments approach. Then the marginal response means are estimated by inverse probability weighting method. Furthermore, to improve the robustness of estimators, we derive an augmented inverse probability weighting estimator which is shown to be consistent and asymptotically normally distributed. Simulation studies and a real-data analysis show that the proposed approach yields highly efficient estimators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.