Abstract

Prediction is a well-studied machine learning task, and prediction algorithms are core ingredients in online products and services. Despite their centrality in the competition between online companies who offer prediction-based products, the strategic use of prediction algorithms remains unexplored. The goal of this paper is to examine strategic use of prediction algorithms. We introduce a novel game-theoretic setting that is based on the PAC learning framework, where each player (aka a prediction algorithm aimed at competition) seeks to maximize the sum of points for which it produces an accurate prediction and the others do not. We show that algorithms aiming at generalization may wittingly mispredict some points to perform better than others on expectation. We analyze the empirical game, i.e., the game induced on a given sample, prove that it always possesses a pure Nash equilibrium, and show that every better-response learning process converges. Moreover, our learning-theoretic analysis suggests that players can, with high probability, learn an approximate pure Nash equilibrium for the whole population using a small number of samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.