Abstract
In regression discontinuity (RD), a running variable (or “score”) crossing a cutoff determines a treatment that affects the mean-regression function. This paper generalizes this usual “one-score mean RD” in three ways: (i) considering multiple scores, (ii) allowing partial effects due to each score crossing its own cutoff, not just the full effect with all scores crossing all cutoffs, and (iii) accommodating quantile/mode regressions. This generalization is motivated by (i) many multiple-score RD cases, (ii) the full-effect identification needing the partial effects to be separated, and (iii) informative quantile/mode regression functions. We establish identification for multiple-score RD (MRD), and propose simple estimators that become “local difference in differences” in case of double scores. We also provide an empirical illustration where partial effects exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Political Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.