Abstract

In this paper, we propose a regression-based nonlinear reduced-order model for nonlinear structural dynamics problems, called the Nonlinear Identification and Dimension-Order Reduction (NLIDOR) algorithm. We evaluate the algorithm using a simple toy model, a chain of coupled oscillators and an actual three-dimensional flat plate. The results show that NLIDOR can accurately identify the natural frequencies and modes of the system and capture the nonlinear dynamical features, while the linear Dynamic Mode Decomposition (DMD) method can only capture linear features and is influenced by nonlinear terms. Compared with the full-order model (FOM), NLIDOR can effectively reduce computational cost, while compared with DMD, NLIDOR significantly improves computational accuracy. The results demonstrate the effectiveness and potential of NLIDOR for solving nonlinear dynamic problems in various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.