Abstract

SummaryIn paired randomized experiments, individuals in a given matched pair may differ on prognostically important covariates despite the best efforts of practitioners. We examine the use of regression adjustment to correct for persistent covariate imbalances after randomization, and present two regression-assisted estimators for the sample average treatment effect in paired experiments. Using the potential outcomes framework, we prove that these estimators are consistent for the sample average treatment effect under mild regularity conditions even if the regression model is improperly specified, and describe how asymptotically conservative confidence intervals can be constructed. We demonstrate that the variances of the regression-assisted estimators are no larger than that of the standard difference-in-means estimator asymptotically, and illustrate the proposed methods by simulation. The analysis does not require a superpopulation model, a constant treatment effect, or the truth of the regression model, and hence provides inference for the sample average treatment effect with the potential to increase power without unrealistic assumptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.