Abstract
Randomized experiment is an important tool for studying the Average Treatment Effect (ATE). This paper considers the regression adjustment estimation of the Sample Average Treatment Effect (SATE) in high-dimensional case, where the multicollinearity problem is often encountered and needs to be properly handled. Many existing regression adjustment methods fail to achieve satisfactory performances. To solve this issue, an Elastic-net adjusted estimator for SATE is proposed under the Rubin causal model of randomized experiments with multicollinearity in high dimensions. The asymptotic properties of the proposed SATE estimator are shown under some regularity conditions, and the asymptotic variance is proved to be not greater than that of the unadjusted estimator. Furthermore, Neyman-type conservative estimators for the asymptotic variance are proposed, which yields tighter confidence intervals than both the unadjusted and the Lasso-based adjusted estimators. Some simulation studies are carried out to show that the Elastic-net adjusted method is better in addressing collinearity problem than the existing methods. The advantages of our proposed method are also shown in analyzing the dataset of HER2 breast cancer patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.