Abstract
Capability analysis corresponds to a set of methods used to estimate and test the ability of an in-control process to provide a specific output. When there is only one quality characteristic that behaves as a continuous random variable, indices like C p and C pk can be used to measure how well requirements are met. Under normality, variation is indicated using 3−s i g m a limits; otherwise, the corresponding quantiles are used. Distribution fitting and transformations to normality can be used to estimate quantiles by finding an overall fit to the data available. However, by giving the same weight to all observations, the best possible fit of extreme values can be lost. To address this issue, a regression approach is proposed to fit functions over maximum likelihood estimates of probabilities of extreme values. A case study from the automotive industry is used to illustrate the proposed approach. To evaluate the performance, extensive Monte Carlo simulation is used, and the results are compared with the corresponding approach using the Clements method. The proposed nonparametric technique shows smaller MAD when high levels of skewness exist. Practitioners with basic knowledge of regression analysis may find the approach useful to estimate capability indices without the need of a specific probability distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.