Abstract
This document contains the results for the estimation of Value at Risk (VaR) based on linear and non-linear quantile regression techniques. In particular, several CAViaR (conditional autoregressive value at risk) models are implemented for this purpose. These models can replicate the empirical properties of asset returns without requiring distributional assumptions. In addition, these methods are compared with traditional VaR techniques for the Colombian peso exchange rate, a public debt market price index, and the Colombian stock price index, during the periods of December 2007 and November 2015. In general, the quantile regression-based techniques show a good performance with respect to the traditional models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.