Abstract

BackgroundThe aim of this study was to analyze differences in couch shifts (setup errors) resulting from image registration of different CT datasets with free breathing cone beam CTs (FB-CBCT). As well automatic as manual image registrations were performed and registration results were correlated to tumor characteristics.MethodsFB-CBCT image registration was performed for 49 patients with lung lesions using slow planning CT (PCT), average intensity projection (AIP), maximum intensity projection (MIP) and mid-ventilation CTs (MidV) as reference images. Both, automatic and manual image registrations were applied. Shift differences were evaluated between the registered CT datasets for automatic and manual registration, respectively. Furthermore, differences between automatic and manual registration were analyzed for the same CT datasets. The registration results were statistically analyzed and correlated to tumor characteristics (3D tumor motion, tumor volume, superior-inferior (SI) distance, tumor environment).ResultsMedian 3D shift differences over all patients were between 0.5 mm (AIPvsMIP) and 1.9 mm (MIPvsPCT and MidVvsPCT) for the automatic registration and between 1.8 mm (AIPvsPCT) and 2.8 mm (MIPvsPCT and MidVvsPCT) for the manual registration. For some patients, large shift differences (>5.0 mm) were found (maximum 10.5 mm, automatic registration).Comparing automatic vs manual registrations for the same reference CTs, ∆AIP achieved the smallest (1.1 mm) and ∆MIP the largest (1.9 mm) median 3D shift differences. The standard deviation (variability) for the 3D shift differences was also the smallest for ∆AIP (1.1 mm). Significant correlations (p < 0.01) between 3D shift difference and 3D tumor motion (AIPvsMIP, MIPvsMidV) and SI distance (AIPvsMIP) (automatic) and also for 3D tumor motion (∆PCT, ∆MidV; automatic vs manual) were found.ConclusionsUsing different CT datasets for image registration with FB-CBCTs can result in different 3D couch shifts. Manual registrations achieved partly different 3D shifts than automatic registrations. AIP CTs yielded the smallest shift differences and might be the most appropriate CT dataset for registration with 3D FB-CBCTs.

Highlights

  • Nowadays, several CT datasets are available for the planning process in stereotactic body radiation therapy (SBRT)

  • The maximum intensity projection (MIP) CT shows the maximum intensity of each voxel over all phases, whereas the average intensity projection (AIP) CT represents the mean intensity of each voxel over the breathing cycle

  • MIP depicts the envelope of the moving tumor with the maximum pixel density during the breathing cycle whereas MidV is a snapshot of the tumor during a short phase in the breathing cycle

Read more

Summary

Introduction

Several CT datasets are available for the planning process in stereotactic body radiation therapy (SBRT). Respiratory-correlated fourdimensional CT (4DCT) is the standard in SBRT to characterize tumor motion and to reduce respiratoryinduced image artifacts [3, 4]. The maximum intensity projection (MIP) CT shows the maximum intensity of each voxel over all phases, whereas the average intensity projection (AIP) CT represents the mean intensity of each voxel over the breathing cycle. A mid-ventilation (MidV) CT can be selected as the 4DCT phase showing the tumor in its near-mean position during the breathing cycle [5]. The aim of this study was to analyze differences in couch shifts (setup errors) resulting from image registration of different CT datasets with free breathing cone beam CTs (FB-CBCT). As well automatic as manual image registrations were performed and registration results were correlated to tumor characteristics

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call