Abstract

The response to external terahertz (THz) irradiation from the silicon carbide nanostructures prepared by the method of substitution of atoms on silicon is investigated. The kinetic dependence of the longitudinal voltage is recorded at room temperature by varying the drain-source current in the device structure performed in a Hall geometry. In the frameworks of proposed model based on the quantum Faraday effect the incident radiation results in the appearance of a generated current in the edge channels with a change in the number of magnetic flux quanta and in the appearance of features in the kinetic dependence of the longitudinal voltage. The generation of intrinsic terahertz irradiation inside the silicon carbide nanostructures is also revealed by the electrically-detected electron paramagnetic resonance (EDEPR) measured the longitudinal voltage as a function of the magnetic field value. Keywords: silicon carbide on silicon, terahertz irradiation, nanostructure, electrically-detected EPR, quantum Faraday effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call