Abstract

Stress echocardiography is a routinely used clinical procedure to diagnose cardiac dysfunction by comparing wall motion information in prestress and poststress ultrasound images. Incomplete data, complicated imaging protocols and misaligned prestress and poststress views, however, are known limitations of conventional stress echocardiography. We discuss how the first two limitations are overcome via the use of real-time three-dimensional (3-D) ultrasound imaging, an emerging modality, and have called the new procedure "3-D stress echocardiography." We also show that the problem of misaligned views can be solved by registration of prestress and poststress 3-D image sequences. Such images are misaligned because of variations in placing the ultrasound transducer and stress-induced anatomical changes. We have developed a technique to temporally align 3-D images of the two sequences first and then to spatially register them to rectify probe placement error while preserving the stress-induced changes. The 3-D spatial registration is mutual information-based. Image registration used in conjunction with 3-D stress echocardiography can potentially improve the diagnostic accuracy of stress testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.