Abstract
In the research reported in this paper, we propose to overcome the unavailability of Global Positioning System (GPS) using combined information obtained from a scanning LADAR rangefinder on an Unmanned Ground Vehicle (UGV) and a LADAR mounted on an Unmanned Aerial Vehicle (UAV) that flies over the terrain being traversed. The approach to estimate and update the position of the UGV involves registering range data from the two LADARs using a combination of a feature-based registration method and a modified version of the well-known Iterative Closest Point (ICP) algorithm. Registration of range data thus guarantees an estimate of the vehicle's position even when only one of the vehicles has GPS information. Additionally, such registration over time (i.e., from sample to sample), enables position information to be maintained even when both vehicles can no longer maintain GPS contact. The approach has been validated by conducting systematic experiments on complex real-world data.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.