Abstract

This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1±7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call