Abstract

The quantitative measurements of hand bones, including volume, surface, orientation, and position are essential in investigating hand kinematics. Moreover, within the measurement stage, bone segmentation is the most important step due to its certain influences on measuring accuracy. Since hand bones are small and tubular in shape, magnetic resonance (MR) imaging is prone to artifacts such as nonuniform intensity and fuzzy boundaries. Thus, greater detail is required for improving segmentation accuracy. The authors then propose using a novel registration-based method on an articulated hand model to segment hand bones from multipostural MR images. The proposed method consists of the model construction and registration-based segmentation stages. Given a reference postural image, the first stage requires construction of a drivable reference model characterized by hand bone shapes, intensity patterns, and articulated joint mechanism. By applying the reference model to the second stage, the authors initially design a model-based registration pursuant to intensity distribution similarity, MR bone intensity properties, and constraints of model geometry to align the reference model to target bone regions of the given postural image. The authors then refine the resulting surface to improve the superimposition between the registered reference model and target bone boundaries. For each subject, given a reference postural image, the proposed method can automatically segment all hand bones from all other postural images. Compared to the ground truth from two experts, the resulting surface image had an average margin of error within 1 mm (mm) only. In addition, the proposed method showed good agreement on the overlap of bone segmentations by dice similarity coefficient and also demonstrated better segmentation results than conventional methods. The proposed registration-based segmentation method can successfully overcome drawbacks caused by inherent artifacts in MR images and obtain more accurate segmentation results automatically. Moreover, realistic hand motion animations can be generated based on the bone segmentation results. The proposed method is found helpful for understanding hand bone geometries in dynamic postures that can be used in simulating 3D hand motion through multipostural MR images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.