Abstract

Virtual wax-ups based on three-dimensional (3D) surface models can be matched (i.e. registered) to cone beam computed tomography (CBCT) data of the same patient for dental implant planning. Thereby, implant planning software can visualize anatomical and prosthetic information simultaneously. The aim of this study is to assess the accuracy of a newly developed registration process. Data pairs of CBCT and 3D surface data of 16 patients for dental implant planning were registered and the discrepancy between the visualized 3D surface data and the corresponding CBCT data were measured on 64 teeth at seven points by two investigators in two iterations with a total of 1792 measurements. All data pairs were matched successfully and mean distances between CBCT and 3D surface data were between 0.03(±0.33) and 0.14(±0.18) mm. At two of seven measuring points, statistically significant correlations were determined between the measured error and the presence and type of restorations. Registration errors in maxilla and mandible were not statistically significantly different. According to the results of this study, registration of 3D surface data and CBCT data works reliably and is sufficiently accurate for dental implant planning. Thereby, barium-sulfate scanning templates can be avoided and dental implant planning can be accomplished fully virtual.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call