Abstract

Non-volatile memories are good candidates for DRAM replacement as main memory in embedded systems and they have many desirable characteristics. Nevertheless, the disadvantages of non-volatile memory co-exist with its advantages. First, the lifetime of some of the non-volatile memories is limited by the number of erase operations. Second, read and write operations have asymmetric speed or power consumption in nonvolatile memory. This paper focuses on the embedded systems using non-volatile memory as main memory. We propose register allocation technique with re-computation to reduce the number of store instructions. When non-volatile memory is applied as the main memory, reducing store instructions will reduce write activities on non-volatile memory. With the proposed approach, the lifetime of non-volatile memory is extended accordingly. The experimental results demonstrate that the proposed technique can efficiently reduce the number of store instructions on systems with non-volatile memory by 25% on average.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.