Abstract

In a previous paper we reported the successful use of graph coloring techniques for doing global register allocation in an experimental PL/I optimizing compiler. When the compiler cannot color the register conflict graph with a number of colors equal to the number of available machine registers, it must add code to spill and reload registers to and from storage. Previously the compiler produced spill code whose quality sometimes left much to be desired, and the ad hoe techniques used took considerable amounts of compile time. We have now discovered how to extend the graph coloring approach so that it naturally solves the spilling problem. Spill decisions are now made on the basis of the register conflict graph and cost estimates of the value of keeping the result of a computation in a register rather than in storage. This new approach produces better object code and takes much less compile time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.