Abstract

C-Prenylated xanthones are pharmacologically attractive specialized metabolites that are distributed in plants and microorganisms. The prenylation of xanthones often contributes to the structural diversity and biological activities of these compounds. However, efficient regiospecific prenylation of xanthones is still challenging. In this study, the regiospecific prenylation of a number of structurally different hydroxyxanthones (3-10) by MaIDT, a plant flavonoid prenyltransferase with substrate flexibility from Morus alba, is demonstrated. Among the enzymatic products, 2-dimethylallyl-1,3,7-trihydroxyxanthone (3a) effectively attenuated glutamate-induced injury in SK-N-SH neuroblastoma cells. These results suggest a potential approach for the synthesis of bioactive prenylated xanthones by a substrate-relaxed flavonoid prenyltransferase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.