Abstract
The first Pd-catalyzed asymmetric allenylic [4+1] cycloaddition was successfully developed. Alternatively, tuning the Pd catalyst switched the reactivity toward an unprecedented [4+3] cycloaddition/cross-coupling. Ligands play a vital role in controlling the reaction pathway, allowing highly selective access to different products from identical substrates. Biological evaluation of the obtained compounds led to the discovery of new antitumor targets. A possible mechanism is proposed, suggesting two interesting catalytic cycles for the cycloaddition with palladium-butadienyls. This study also demonstrated the potential and utility of allenic esters as 1,4-biselectrophiles and C4 synthons for participating in cycloaddition reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.