Abstract
A crucial step in plant xanthone biosynthesis is the cyclization of an intermediate benzophenone to a xanthone. In cultured cells of Centaurium erythraea RAFN, 2,3′,4,6-tetrahydroxybenzophenone (THBP) was shown to be intramolecularly coupled to 1,3,5-trihydroxyxanthone, whereas in cell cultures of Hypericum androsaemum L. it was coupled to form the isomeric 1,3,7-trihydroxyxanthone. These regioselective cyclizations that occur ortho and para, respectively, to the 3′-hydroxy group of the benzophenone depend on cytochrome P450, as shown by the effectiveness of established P450 inhibitors and blue-light-reversible carbon monoxide inhibition. Furthermore, the reactions absolutely require NADPH and O2. The underlying reaction mechanism is probably an oxidative phenol coupling that is catalyzed regioselectively by xanthone synthases. These enzymes are proposed to be cytochrome P450 oxidases. The intramolecular cyclizations of THBP to 1,3,5- and 1,3,7-trihydroxyxanthones catalyzed by the two xanthone synthases represent an important branch point in the plant xanthone biosynthetic pathway.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.