Abstract

In an unusual reaction of [Pd(L(1))Cl2] (L(1) = 2-(arylazo)pyridine) with amines, a new series of palladium complexes [Pd(L(2•-))Cl] (L(2) = 2-((2-amino)arylazo)pyridine) (1a-1h) were isolated. The complexes were formed via N-H and N-C bond cleavage reactions of 1°/2° and 3° amines, respectively, followed by regioselective aromatic ortho-C-N bond formation reaction and are associated with ortho-C-H/ortho-C-Cl bond activation. A large variety of amines including both aromatic and aliphatic were found to be effective in producing air-stable complexes. Identity of the resultant complexes was confirmed by their X-ray structure determination. Efforts were also made to understand the mechanism of the reaction. A series of experiments were performed, which point toward initial ligand reduction followed by intraligand electron transfer. Examination of the structural parameters of these complexes (1) indicates that the in situ generated ligand coordinated to the Pd(II) center serves as the backbone of these air-stable monoradical complexes. Molecular and electronic structures of the isolated complexes were further scrutinized by various spectroscopic techniques including cyclic voltammetry, variable temperature magnetic susceptibility measurements, electron paramagnetic resonance, and UV-vis spectroscopy. Finally the electronic structure was confirmed by density functional theory calculations. The isolated monoradical complexes adopt an unusual π-stacked array, which leads to a relatively strong antiferromagnetic interaction (J = -40 cm(-1) for the representative complex 1c).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.