Abstract

Solvent-assisted ligand incorporation is an excellent method for the post-synthetic functionalization of Zr-based metal–organic frameworks (MOFs), as carboxylate-derivative functionalities readily coordinate to the Zr6 nodes by displacing node-based aqua and terminal hydroxo ligands. In this study, a photocatalytically active ruthenium complex RuII(bpy)2(dcbpy), that is, bis-(2,2′-bipyridine)-(4,4′-dicarboxy-2,2′-bipyridine)ruthenium, was installed in the mono-protonated (carboxylic acid) form within NU-1000 via SALI. Crystallographic information regarding the siting of the ruthenium complex within the MOF pores is obtained by difference envelope density analysis. The ruthenium-functionalized MOF, termed Ru-NU-1000, shows excellent heterogeneous photocatalytic activity for an oxidative amine coupling reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.