Abstract
Optoelectronic properties of molecular solids are important for organic electronic devices and are largely determined by the adopted molecular packing motifs. In this study, we analyzed such structure‐property relationships for the partially regioselective fluorinated tetracenes 1,2,12‐trifluorotetracene, 1,2,10,12‐tetrafluorotetracene and 1,2,9,10,11‐pentafluorotetracene that were further compared with tetracene and perfluoro‐tetracene. Quantum chemical DFT calculations in combination with optical absorption spectroscopy data show that the frontier orbital energies are lowered with the degree of fluorination, while their optical gap is barely affected. However, the crystal structure changes from a herringbone packing motif of tetracene towards a planar stacking motif of the fluorinated tetracene derivatives, which is accompanied by the formation of excimers and leads to strongly red‐shifted photoluminescence with larger lifetimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.