Abstract

The selective enzymatic hydrolysis of 3′,5′-di-O-acetylthyidine (1) was studied. The lipases from porcine pancreas and Aspergillus niger, and pig liver esterase, all catalysed selective hydrolysis of the 5′O-acetyl group, but the lipase from Candida cylindracea catalysed selective hydrolysis of the 3′-O-acetyl group. Highest selectivity, leading to essentially pure 3′-O-acetylthymidine, was achieved using porcine pancreatic lipase in dilute solution at pH 7.5. Provision of an artificial interface in the form of polystyrene beads led to a significant increase in the rate of hydrolysis, accompanied by a marked fall in selectivity. Other changes in the hydrolysis conditions, such as raising the concentration of substrate or adding cosolvent, also led to a fall in selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.