Abstract

The molecular confinement within rigid macrocyclic receptors can trigger catalytic activity and steer the selectivity of organic reactions. In this work, the dimerization of methylcyclopentadiene (MCPD) isomers in the presence of cucurbit[7]uril (CB7) was found to display, besides a large rate acceleration, a striking regioselectivity in aqueous solution at pH 3, different from the thermodynamic products predominating in the absence of the supramolecular catalyst. Among the different possible regioisomers and diastereomers, the endo-3,7-dimethyl-3a,4,7,7a-tetrahydro-1H-4,7-methanoindene adduct was selectively formed, which is otherwise found only as a minor product in the dimerization of neat MCPD or in commercial dimeric mixtures. This product originates from the reaction of the heteroternary complex of 1-MCPD and 2-MCPD within CB7, in which the methyl groups are positioned in an "anti-diaxial" arrangement and point towards the open portals of the macrocycle, resulting in a preferred packing of the reacting cyclopentadiene rings. The selectivity of the dimerization of MCPD in the absence and presence of CB7 is supported by quantum-chemical calculations. Insert abstract text here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.