Abstract

Synthetic and mechanistic aspects of the diarylborinic acid-catalyzed regioselective monofunctionalization of 1,2- and 1,3-diols are presented. Diarylborinic acid catalysis is shown to be an efficient and general method for monotosylation of pyranoside derivatives bearing three secondary hydroxyl groups (7 examples, 88% average yield). In addition, the scope of the selective acylation, sulfonylation, and alkylation is extended to 1,2- and 1,3-diols not derived from carbohydrates (28 examples); the efficiency, generality, and operational simplicity of this method are competitive with those of state-of-the-art protocols including the broadly applied organotin-catalyzed or -mediated reactions. Mechanistic details of the organoboron-catalyzed processes are explored using competition experiments, kinetics, and catalyst structure-activity relationships. These experiments are consistent with a mechanism in which a tetracoordinate borinate complex reacts with the electrophilic species in the turnover-limiting step of the catalytic cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.