Abstract

Reaction of ArNCO with syn-[MoO(mu-O)(S2CNR2)]2 or syn-[MoO(mu-NAr)(S2CNR2)]2 at 110 degrees C leads to the facile formation of bridging ureato complexes [Mo2(NAr)2(mu-NAr){mu-ArNC(O)NAr}(S2CNR2)2](Ar = Ph, p-tol; R = Me, Et, Pr), formed upon substitution of all oxo ligands and addition of a further equivalent of isocyanate across one of the bridging imido ligands. Related sulfido-bridged complexes [Mo2(NAr)2(mu-S){mu-ArNC(O)NAr}(S2CNR2)2] have been prepared from syn-[Mo2O2(mu-O)(mu-S)(S2CNR2)2]. When reactions with syn-[MoO(mu-NAr)(S2CNEt2)]2 were followed by NMR, intermediates were observed, being formulated as [Mo2O(NAr)(mu-NAr){mu-ArNC(O)NAr}(S2CNEt2)2], which at higher temperatures convert to the fully substituted products. A crystallographic study of [Mo2(N-p-tol)2(mu-S){mu-p-tolNC(O)N-p-tol}(S2CNPr2)2] reveals that the bridging ureato ligand is bound asymmetrically to the dimolybdenum centre-molybdenum-nitrogen bonds trans to the terminal imido ligands being significantly elongated with respect to those cis-a result of the trans-influence of the terminal imido ligands. This trans-influence also leads to a trans-effect, whereby the exchange of aryl isocyanates can occur in a regioselective manner. This is followed by NMR studies and confirmed by a crystallographic study of [Mo2(N-p-tol)2(mu-N-p-tol){mu-p-tolNC(O)NPh}(S2CNEt2)2]--the PhNCO occupying the site trans to the terminal imido ligands. Ureato complexes also react with PhNCS, initially forming [Mo2(NAr)2(mu-S){mu-ArNC(O)NAr}(S2CNR2)2], resulting from exchange of the bridging imido ligand for sulfur, together with small amounts of [Mo2(NAr)2(mu-S)(mu-S2)(S2CNEt2)2], containing bridging sulfide and disulfide ligands. The ureato complexes [Mo2(NAr)2(mu-S){mu-ArNC(O)NAr}(S2CNR2)2] react further with PhNCS to give [Mo2(NAr)2(mu-S)2(S2CNR2)2]n (n = 1, 2), which exist in a dimer-tetramer equilibrium. In order to confirm these results crystallographic studies have been carried out on [Mo2(N-p-tol)2(mu-S)(mu-S2)(S2CNEt2)2] and [Mo2(N-p-tol)2(mu-S)2(S2CNPr2)2]2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call