Abstract

Frustrated Lewis pairs (FLPs) are well documented for the activation of small molecules such as dihydrogen and carbon dioxide1-4. Although canonical FLP chemistry is heterolytic in nature, recent work has shown that certain FLPs can undergo single-electron transfer to afford radical pairs5. Owing to steric encumbrance and/or weak bonding association, these radicals do not annihilate one another, and they have thus been named frustrated radical pairs (FRPs). Notable preliminary results suggest that FRPs may be useful reagents in chemical synthesis6-8, although their applications remain limited. Here we demonstrate that the functionalization of C(sp3)-H bonds can be accomplished using a class of FRPs generated from disilazide donors and an N-oxoammonium acceptor. Together, these species undergo single-electron transfer to generate a transient and persistent radical pair capable of cleaving unactivated C-H bonds to furnish aminoxylated products. By tuning the structure of the donor, it is possible to control regioselectivity and tailor reactivity towards tertiary, secondary or primary C-H bonds. Mechanistic studies lend strong support for the formation and involvement of radical pairs in the target reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.