Abstract

Mononuclear Fe(II) complexes ([(6-Ph(2)TPA)Fe(PhC(O)C(R)C(O)Ph)]X (3-X: R = OH, X = ClO(4) or OTf; 4: R = H, X = ClO(4))) supported by the 6-Ph(2)TPA chelate ligand (6-Ph(2)TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-(2-pyridylmethyl)amine) and containing a β-diketonate ligand bound via a six-membered chelate ring have been synthesized. The complexes have all been characterized by (1)H NMR, UV-vis, and infrared spectroscopy and variably by elemental analysis, mass spectrometry, and X-ray crystallography. Treatment of dry CH(3)CN solutions of 3-OTf with O(2) leads to oxidative cleavage of the C(1)-C(2) and C(2)-C(3) bonds of the acireductone via a dioxygenase reaction, leading to formation of carbon monoxide and 2 equiv of benzoic acid as well as two other products not derived from dioxygenase reactivity: 2-oxo-2-phenylethylbenzoate and benzil. Treatment of CH(3)CN/H(2)O solutions of 3-X with O(2) leads to the formation of an additional product, benzoylformic acid, indicative of the operation of a new reaction pathway in which only the C(1)-C(2) bond is cleaved. Mechanistic studies show that the change in regioselectivity is due to the hydration of a vicinal triketone intermediate in the presence of both an iron center and water. This is the first structural and functional model of relevance to iron-containing acireductone dioxygenase (Fe-ARD'), an enzyme in the methionine salvage pathway that catalyzes the regiospecific oxidation of 1,2-dihydroxy-3-oxo-(S)-methylthiopentene to form 2-oxo-4-methylthiobutyrate. Importantly, this model system is found to control the regioselectivity of aliphatic carbon-carbon bond cleavage by changes involving an intermediate in the reaction pathway, rather than by the binding mode of the substrate, as had been proposed in studies of acireductone enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.