Abstract

AbstractAldehyde decarbonylation is a vital chemical transformation in the synthesis of natural products. Nature accomplishes this process through a family of decarbonylase enzymes, while in the laboratory, harsh transition metals and elevated temperatures are required. Herein, we report a mild aldehyde decarbonylation reaction that exhibits exclusive selectivity for ortho-aldehydes during a tandem nitrile boronic acid cross-coupling reaction. A wide substrate scope is displayed that includes regioselective removal of the ortho-aldehyde from phenyl boronic acids in the presence of meta- or para-aldehydes. A mechanistic investigation of the observed regioselectivity for ortho-aldehydes by density functional theory (DFT) calculations shows that the CO ligand extrusion is energetically more favorable for the ortho position as compared to the para position.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call