Abstract

It is thought that in skeletal muscle excitation-contraction (EC) coupling, the release of Ca2+ from the sarcoplasmic reticulum is controlled by the dihydropyridine (DHP) receptor in the transverse tubular membrane, where it serves as the voltage sensor. We have shown previously that injection of an expression plasmid carrying the skeletal muscle DHP receptor complementary DNA restores EC coupling and L-type calcium current that are missing in skeletal muscle myotubes from mutant mice with muscular dysgenesis. This restored coupling resembles normal skeletal muscle EC coupling, which does not require entry of extracellular Ca2+. By contrast, injection into dysgenic myotubes of an expression plasmid carrying the cardiac DHP receptor cDNA produces L-type calcium current and cardiac-type EC coupling, which does require entry of extracellular Ca2+. To identify the regions responsible for this important functional difference between the two structurally similar DHP receptors, we have expressed various chimaeric DHP receptor cDNAs in dysgenic myotubes. The results obtained indicate that the putative cytoplasmic region between repeats II and III of the skeletal muscle DHP receptor is an important determinant of skeletal-type EC coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.