Abstract

Breast cancer is the most common cancer among women. Micro-calcification cluster on X-ray mammogram is one of the most important abnormalities, and it is effective for early cancer detection. Surrounding Region Dependence Method (SRDM), a statistical texture analysis method is applied for detecting Regions of Interest (ROIs) containing microcalcifications. Inspired by the SRDM, we present a method that extract gray and other features which are effective to predict the positive and negative regions of micro-calcifications clusters in mammogram. By constructing a set of artificial images only containing micro-calcifications, we locate the suspicious pixels of calcifications of a SRDM matrix in original image map. Features are extracted based on these pixels for imbalance date and then the repeated random subsampling method and Random Forest (RF) classifier are used for classification. True Positive (TP) rate and False Positive (FP) can reflect how the result will be. The TP rate is 90% and FP rate is 88.8% when the threshold q is 10. We draw the Receiver Operating Characteristic (ROC) curve and the Area Under the ROC Curve (AUC) value reaches 0.9224. The experiment indicates that our method is effective. A novel regions of micro-calcifications clusters detection method is developed, which is based on new features for imbalance data in mammography, and it can be considered to help improving the accuracy of computer aided diagnosis breast cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.