Abstract

This paper is devoted to the segmentation of cell nuclei from time lapse confocal microscopy images, taken throughout early Zebrafish embryogenesis. The segmentation allows to identify and quantify the number of cells in the animal model. This kind of information is relevant to estimate important biological parameters such as the cell proliferation rate in time and space. Our approach is based on the active contour model without edges. We compare two different formulations of the model equation and evaluate their performances in segmenting nuclei of different shapes and sizes. Qualitative and quantitative comparisons are performed on both synthetic and real data, by means of suitable gold standard. The best approach is then applied on a number of time lapses for the segmentation and counting of cells during the development of a zebrafish embryo between the sphere and the shield stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.