Abstract

While algal biofuels have the potential to reduce the national reliance on fossil fuels, high water consumption associated with algal biomass cultivation represents a major concern potentially compromising the sustainable commercialization of this technology. This study focuses on quantifying the water footprint (WF) and water scarcity footprint (WSF) of renewable diesel derived from algal biomass and provides insights into where algal cultivation is less water-intensive than traditional ethanol and biodiesel feedstocks. Results are generated with an engineering process model developed to predict the life-cycle water consumption, considering green, blue, and gray water, of algae facilities across the United States at a high spatiotemporal resolution. The total WFs for Florida and Arizona are determined to be 13.1 and 17.6 m3 GJ-1, respectively. The blue WF in Arizona is shown to be 8.5 times larger than in Florida, while the green WF is 4.5 times smaller, but when combined into a total WF, there is just a 26% difference between the two locations. The analysis reveals that the total life-cycle WFs of algal renewable diesel are smaller than the optimal WFs of corn ethanol and soybean biodiesel. Algal systems benefit from higher growth rates and offer the opportunity to manage wastewater streams, therefore generating smaller green and gray WFs than those of conventional biofuels. The WSF analysis identifies the Gulf Coast as the most suitable region for algal cultivation, with cultivation in the western US shown to exacerbate local water stress levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call