Abstract

BackgroundA long, slender body plan characterized by an elongate antorbital region and posterior displacement of the unpaired fins has evolved multiple times within ray-finned fishes, and is associated with ambush predation. The axial skeleton of ray-finned fishes is divided into abdominal and caudal regions, considered to be evolutionary modules. In this study, we test whether the convergent evolution of the ambush predator body plan is associated with predictable, regional changes in the axial skeleton, specifically whether the abdominal region is preferentially lengthened relative to the caudal region through the addition of vertebrae. We test this hypothesis in seven clades showing convergent evolution of this body plan, examining abdominal and caudal vertebral counts in over 300 living and fossil species. In four of these clades, we also examined the relationship between the fineness ratio and vertebral regionalization using phylogenetic independent contrasts.ResultsWe report that in five of the clades surveyed, Lepisosteidae, Esocidae, Belonidae, Sphyraenidae and Fistulariidae, vertebrae are added preferentially to the abdominal region. In Lepisosteidae, Esocidae, and Belonidae, increasing abdominal vertebral count was also significantly related to increasing fineness ratio, a measure of elongation. Two clades did not preferentially add abdominal vertebrae: Saurichthyidae and Aulostomidae. Both of these groups show the development of a novel caudal region anterior to the insertion of the anal fin, morphologically differentiated from more posterior caudal vertebrae.ConclusionsThe preferential addition of abdominal vertebrae in fishes with an elongate body shape is consistent with the existence of a conservative positioning module formed by the boundary between the abdominal and caudal vertebral regions and the anterior insertion of the anal fin. Dissociation of this module is possible, although less probable than changes in the independently evolving abdominal region. Dissociation of the axial skeleton-median fin module leads to increased regionalization within the caudal vertebral column, something that has evolved several times in bony fishes, and may be homologous with the sacral region of tetrapods. These results suggest that modularity of the axial skeleton may result in somewhat predictable evolutionary outcomes in bony fishes.

Highlights

  • A long, slender body plan characterized by an elongate antorbital region and posterior displacement of the unpaired fins has evolved multiple times within ray-finned fishes, and is associated with ambush predation

  • A detailed investigation into axial elongation in actinopterygians found that the addition of vertebrae occurred in either the abdominal region, the caudal region, or both, and suggested these body regions were capable of independent evolution, being organised into separate developmental modules [3]

  • We report that abdominal vertebrae are added preferentially in the majority (5/7) of the clades examined, and the number of abdominal vertebrae was significantly associated with increasing axial elongation in 3/4 of the clades in which this was tested

Read more

Summary

Introduction

A long, slender body plan characterized by an elongate antorbital region and posterior displacement of the unpaired fins has evolved multiple times within ray-finned fishes, and is associated with ambush predation. We test whether the convergent evolution of the ambush predator body plan is associated with predictable, regional changes in the axial skeleton, whether the abdominal region is preferentially lengthened relative to the caudal region through the addition of vertebrae. We test this hypothesis in seven clades showing convergent evolution of this body plan, examining abdominal and caudal vertebral counts in over 300 living and fossil species. Changes between the abdominal and caudal modules of the fish axial skeleton should be more probable than disintegration of either of these modules

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call