Abstract

Climate change, socioeconomic development, and irrigation management are exacerbating water scarcity in many regions worldwide. However, current global-scale modeling approaches used to evaluate the impact of these factors on water resources are limited by coarse resolution and simplified representation of local socioeconomic and agricultural systems, which hinders their use for regional decision making. Here, we upgraded the irrigation water use simulation in the system dynamics and water environmental model (SyDWEM) and integrated it with the water supply stress index (WaSSI) ecosystem services model. This integrated model (SyDWEM-WaSSI) simulated local socioeconomic and agricultural systems to accurately assess future water stress associated with climate change, socioeconomic development, and agricultural management at subbasin levels. We calibrated the integrated model and applied it to assess future water stress levels in Texas from 2015 to 2050. The water stress index (WSI), defined as the ratio of water withdrawal to availability, was used to indicate different water stress levels. Our results showed that the integrated model captured changes in water demand across various sectors and the impact of climate change on water supply. Projected high water stress areas (WSI > 0.4) are expected to increase significantly by 2050, particularly in the Texas High Plains and Rolling Plains regions, where irrigation water use was projected to rise due to the impact of climate change. Metropolitan areas, including Dallas, Houston, Austin, and San Antonio, were also expected to experience increased domestic water demand, further exacerbating water stress in these areas. Our study highlights the need to incorporate socioeconomic planning into water resources management. The integrated model is a valuable tool for decisionmakers and stakeholders to evaluate the impacts of climate change, socioeconomic development, and irrigation management on water resources at the local scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.