Abstract

To reduce losses from the various disasters, regional water security evaluation and risk control model is studied. The model is built upon different kinds of indices in water security system, proceeding from the whole structure and its parts of evaluation, forewarning and decision making analysis. Based on China's national conditions, this study firstly advances an evaluation index system of regional water security, which includes three subsystems of water resource security, water environment security, and water disaster control security. Secondly, fuzzy analytic hierarchy process based on accelerating genetic algorithm (AGA-FAHP) combines with entropy weight method (EW) to determine the objective weights of evaluation indexes. The subjective and objective weights can be integrated by the principle of minimum relative information entropy. The subsystem weights are obtained by using AGA-FAHP. Then regional water security evaluation model is established. Thirdly, the comparison judging method is adopted to divide warning degree of water security with the comprehensive evaluation index and forewarning standards, and then the local conditions for proposing planning schemes. Finally, decision making analysis is employed to find the effective indices based on projection pursuit technique with the ideal point method in multi-index decision. This study takes Jiangsu province, China as an example. The evaluation results from 2000 to 2015 show that the development trend of water security is increasing on the whole except in several individual years. Risk forewarning doesn't take place in recent years. But risk is always there. So, project and non-project measures are proposed for the corresponding forewarning levels. From light warnings for three times and moderate warning for once in 2000, 2001, 2002, and 2004, index 1, 3, 4, 11, 13, 17, and 18 are selected as the effective indices to decision making analysis in common. Then, the solution schemes are given as the processing method accordingly. This conclusion is reasonable and its method is practical that match the reality. It suggests that the presented model is feasible with theory and application, which can offer advice in regional water security management to some extent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.