Abstract
AbstractHuman activities (e.g., shipping, tourism, oil, gas development) have increased in the Chukchi Sea because of declining sea ice. The declining sea ice itself and these activities may affect Pacific walrus (Odobenus rosmarus divergens) abundance; however, previous walrus abundance estimates have been notably imprecise. When sea ice is absent from the eastern Chukchi Sea, walruses in waters of the United States usually rest together onshore at a single Alaska coastal haulout, where they can be surveyed more easily than when they rest on dispersed offshore ice floes. We estimated the number of walruses on land (herd size) at this haulout from 13 unoccupied aircraft system (UAS) surveys flown within a 10‐day period in each of 2018 and 2019. We estimated population size of walruses using the haulout over the course of the surveys by combining herd size data with data from satellite‐linked transmitters that indicated whether tagged walruses were in or out of water during each survey. Our estimates of the population size of walruses using the haulout during each year's survey period were similar to each other and more precise than historical walrus abundance estimates: posterior means (95% credibility intervals) were 166,000 (133,000–201,000) for 2018 and 189,000 (135,000–251,000) for 2019. Auxiliary observations support using these estimates to represent the size of the population using the eastern Chukchi Sea in autumn during the surveyed years. Our study site was the only substantial Chukchi Sea coastal haulout in the United States during the survey periods and study‐specific tracking data (consistent with known distribution and movement patterns) indicated tagged walruses remained in eastern Chukchi waters during the survey periods. In addition, the imagery, telemetry, and analytical methods developed for this study advance the prospect for precise range‐wide walrus population size estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.