Abstract

Ascending thoracic aortic aneurysms (aTAAs) carry a risk of acute type A dissection. Elective repair guidelines are based on diameter, but complications often occur below diameter threshold. Biomechanically, dissection can occur when wall stress exceeds wall strength. Aneurysm wall stresses may better capture dissection risk. Our aim was to investigate patient-specific aTAA wall stresses associated with a tricuspid aortic valve (TAV) by anatomic region. Patients with aneurysm diameter ≥4.0 cm underwent computed tomography angiography. Aneurysm geometries were reconstructed and loaded to systemic pressure while taking prestress into account. Finite element analyses were conducted to obtain wall stress distributions. The 99th percentile longitudinal and circumferential stresses were determined at systole. Wall stresses between regions were compared using one-way analysis of variance with post hoc Tukey HSD for pairwise comparisons. Peak longitudinal wall stresses on aneurysms (n = 204) were 326 [standard deviation (SD): 61.7], 246 (SD: 63.4) and 195 (SD: 38.7) kPa in sinuses of Valsalva, sinotubular junction (STJ) and ascending aorta (AscAo), respectively, with significant differences between AscAo and both sinuses (P < 0.001) and STJ (P < 0.001). Peak circumferential wall stresses were 416 (SD: 85.1), 501 (SD: 119) and 340 (SD: 57.6) kPa for sinuses, STJ and AscAo, respectively, with significant differences between AscAo and both sinuses (P < 0.001) and STJ (P < 0.001). Circumferential and longitudinal wall stresses were greater in the aortic root than AscAo on aneurysm patients with a TAV. Aneurysm wall stress magnitudes and distribution relative to respective regional wall strength could improve understanding of aortic regions at greater risk of dissection in a particular patient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call