Abstract

The statistical characteristics of precipitation microphysics in lightning clouds are not yet fully understood, as a result of the limitations of traditional observational methods. Using the latest observations from the dual-frequency radar and microwave imager onboard the Global Precipitation Mission (GPM) and ground-based lightning observations, the precipitation microphysics of precipitation features with and without lightning (LPFs and NLPFs) was investigated across four typical regions of China in summer during the time period of 2014–2021. The statistical results show that the LPFs are characterized by smaller concentration and larger mass-weighted mean diameter (Dm) for rain and ice hydrometeors than those of NLPFs. Below the melting layer, the radar reflectivity (Ze) for both the LPFs and NLPFs generally decreases toward the surface, indicating the evaporation or strong break-up of rain hydrometeors. Above the melting layer, the Ze values mainly increase as the altitudes decrease for both LPFs and NLPFs, indicating the rimming, aggregation, or deposition processes. However, the change in slope is much smaller for the LPFs than for the NLPFs, which suggests a more uniform distribution of large ice hydrometeors at high altitudes, probably as a result of the stronger updrafts within the LPFs. The microphysical structures of the LPFs show great regional differences among the four regions of China, which is characterized by the low concentration of large-sized rain hydrometeors over Northeast China, and a high concentration of small-sized rain hydrometeors near the surface over the Yangtze-Huaihe River basin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.