Abstract

The paper presents the first paleontological data (pollen, plant macrofossil, diatom and ostracod) on the sediments of Lake Beloye, which is situated in the forest-steppe zone of Western Siberia. Our study contributes to better understanding of the Middle–Late Holocene regional to local environmental changes. Regionally, we recognized a cold stage of 3.4–2.3 calibrated ka BP and a dry stage of 2.8–1.7ka BP. The dry stage coincides with the climate-driven lowered level of the lake at 2.6–1.5ka BP. Later, the climate changed to warmer and wetter, which resulted in a highest stand of the lake at 1.3–0.2ka BP and was followed by the lowering of the lake. Forest-steppe persisted in this area during the whole period under consideration, but probably shifted southward. Such a shift is reflected in the environment around Lake Beloye similar to that of modern taiga, which existed at 3.2–1.3ka BP, however, compared to the colder and wetter climate of taiga, the conditions were colder and drier. The local plant associations and the lake ecosystem were affected by those events of climate and lake level changes. The initial eutrophic sedge-reed swamp evolved to the oligo-mesotrophic sphagnum bog, which existed around the lake at 3.2–1.3ka BP. Later, the bogging process was interrupted by the lake transgression, after which the dried bog around the lake was occupied by the birch forest. The lake ecosystem was strongly affected by the 3.4ka BP climate change: the low-alkaline eutrophic lake with abundant water higher plants and diatoms changed to the alkaline oligotrophic lake with calcium-fixing macrophytic algae and angiosperms. This resulted in total change of lake's bio-geochemical and sedimentation patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.