Abstract

BackgroundQuantitative analysis of brain positron-emission tomography (PET) depends on structural segmentation, which can be time-consuming and operator-dependent when performed manually. Previous automatic segmentation usually registered subjects’ images onto an atlas template (defined as RSIAT here) for group analysis, which changed the individuals’ images and probably affected regional PET segmentation. In contrast, we could register atlas template to subjects’ images (RATSI), which created an individual atlas template and may be more accurate for PET segmentation. We segmented two representative brain areas in twenty Parkinson disease (PD) and eight multiple system atrophy (MSA) patients performed in hybrid positron-emission tomography/magnetic resonance imaging (PET/MR). The segmentation accuracy was evaluated using the Dice coefficient (DC) and Hausdorff distance (HD), and the standardized uptake value (SUV) measurements of these two automatic segmentation methods were compared, using manual segmentation as a reference.ResultsThe DC of RATSI increased, and the HD decreased significantly (P < 0.05) compared with the RSIAT in PD, while the results of one-way analysis of variance (ANOVA) found no significant differences in the SUVmean and SUVmax among the two automatic and the manual segmentation methods. Further, RATSI was used to compare regional differences in cerebral metabolism pattern between PD and MSA patients. The SUVmean in the segmented cerebellar gray matter for the MSA group was significantly lower compared with the PD group (P < 0.05), which is consistent with previous reports.ConclusionThe RATSI was more accurate for the caudate nucleus and putamen automatic segmentation and can be used for regional PET analysis in hybrid PET/MR.

Highlights

  • Quantitative analysis of brain positron-emission tomography (PET) depends on structural segmentation, which can be time-consuming and operator-dependent when performed manually

  • In 2014, the latest generation of clinical whole-body hybrid positron-emission tomography/magnetic resonance imaging (PET/MR) scanner (SIGNA PET/MR, GE Healthcare, Waukesha WI, USA) emerged with silicon photomultipliers (SiPMs), which digitize and process the signal directly within the magnetic field, which resulted in a thousand-fold improvement in time resolution, permitting time-of-flight (TOF) imaging [9]

  • Significant differences in Dice coefficient (DC) and Hausdorff distance (HD) were found between the two methods (P < 0.05)

Read more

Summary

Introduction

Quantitative analysis of brain positron-emission tomography (PET) depends on structural segmentation, which can be time-consuming and operator-dependent when performed manually. We could register atlas template to subjects’ images (RATSI), which created an individual atlas template and may be more accurate for PET segmentation. We segmented two representative brain areas in twenty Parkinson disease (PD) and eight multiple system atrophy (MSA) patients performed in hybrid positron-emission tomography/magnetic resonance imaging (PET/MR). Positron-emission tomography (PET) is a molecular imaging method that uses the annihilation reactions of different positron emitters in radiotracers to generate images from the 511 keV gamma rays emitted. Until 2010, with the advent of a magnet-compatible avalanche photodiode detector (APD), the first commercial whole-body hybrid PET/MR system (Siemens Biograph MRI scanner, Siemens Healthcare, Erlangen, Germany) [8] was introduced. In 2014, the latest generation of clinical whole-body hybrid PET/MR scanner (SIGNA PET/MR, GE Healthcare, Waukesha WI, USA) emerged with silicon photomultipliers (SiPMs), which digitize and process the signal directly within the magnetic field, which resulted in a thousand-fold improvement in time resolution, permitting time-of-flight (TOF) imaging [9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call