Abstract
The surface of Europa is geologically young and shows signs of recent activity. Studying it from a photometric point of view gives us insight on its physical state. We used a collection of 57 images from Voyager’s Imaging Science System and New Horizons’ LOng Range Reconnaissance Imager for which we corrected the geometric metadata and projected every pixel to compute photometric information (reflectance and geometry of observation). We studied 20 areas scattered across the surface of Europa and estimated their photometric behavior using the Hapke radiative transfer model and a Bayesian framework in order to estimate their microphysical state. We have found that most of them were consistent with the bright backscattering behavior of Europa, already observed at a global scale, indicating the presence of grains maturated by space weathering. However, we have identified very bright areas showing a narrow forward scattering possibly indicating the presence of fresh deposits that could be attributed to recent cryovolcanism or jets. Overall, we showed that the photometry of Europa’s surface is more diverse than previously thought and so is its microphysical state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.