Abstract

The subiculum and the lateral entorhinal cortex (LEC) are the main output areas of the hippocampus which contribute to spatial and non-spatial memory. The proximal part of the subiculum (bordering CA1) receives heavy projections from the perirhinal cortex and the distal part of CA1 (bordering the subiculum), both known for their ties to object recognition memory. However, the extent to which the proximal subiculum contributes to non-spatial memory is still unclear. Comparatively, the involvement of the LEC in non-spatial information processing is quite well known. However, very few studies have investigated its role within the frame of memory function. Thus, it is not known whether its contribution depends on memory load. In addition, the deep layers of the EC have been shown to be predictive of subsequent memory performance, but not its superficial layers. Hence, here we tested the extent to which the proximal part of the subiculum and the superficial and deep layers of the LEC contribute to non-spatial memory, and whether this contribution depends on the memory load of the task. To do so, we imaged brain activity at cellular resolution in these areas in rats performing a delayed nonmatch to sample task based on odors with two different memory loads (5 or 10 odors). This imaging technique is based on the detection of the RNA of the immediate-early gene Arc, which is especially tied to synaptic plasticity and behavioral demands, and is commonly used to map activity in the medial temporal lobe. We report for the first time that the proximal part of the subiculum is recruited in a memory-load dependent manner and the deep layers of the LEC engaged under high memory load conditions during the retrieval of non-spatial memory, thus shedding light on the specific networks contributing to non-spatial memory retrieval.

Highlights

  • The most studied neuroanatomical pathway supporting spatial and non-spatial memory to date has been the trisynaptic loop

  • To assess whether the proximal part of the subiculum and the deep layers of the lateral entorhinal cortex (LEC) contribute to the retrieval of non-spatial memory and whether this contribution depends on the memory load of the task, we studied patterns of neuronal activation during a delayed nonmatch to sample recognition memory task based on odors (DNMO; Nakamura et al, 2013)

  • The results show that the dorsal subiculum is highly activated during non-spatial recognition memory retrieval, but that its recruitment dramatically is affected by the memory-load of tasks

Read more

Summary

Introduction

The most studied neuroanatomical pathway supporting spatial and non-spatial memory to date has been the trisynaptic loop. The subiculum, consisting of several cortical fields located between CA1 and the EC, is the major output structure of the hippocampus (Amaral and Witter, 1989; Witter et al, 1989; Amaral et al, 1991; O’Mara et al, 2001) This area has been suggested as the last stage of hippocampal processing to give rise to a complex episodic code that includes both spatial and non-spatial information, which is further directed to the neocortex (O’Mara, 2005). The extent to which the subiculum contributes to non-spatial memory is still unclear

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call