Abstract

AbstractAimAlthough species richness globally is likely to be declining, patterns in diversity at the regional scale depend on species gains within new habitats and species losses from previously inhabited areas. Our understanding of the processes associated with gains or losses remains poor, including whether these events exhibit immediate or delayed responses to environmental change.LocationThe study focuses on nine temperate marine ecosystems in North America.Time periodThe study period varies by region, but overall encompasses observations from 1970 to 2014.Major taxa studiedWe identified regional gains and losses for 577 marine fish and invertebrate species.MethodsFrom a total of 166,213 sampling events from bottom trawls across North America that informed 17,997 independent observations of species gains and losses, we built generalized linear mixed effects models to test whether lagged temperature can explain instances of gains and losses of marine fishes and invertebrates in North American continental shelf habitats.ResultsWe found that gains were less likely in years with high seasonality, consistent with seasonal extremes as a strong constraint on species occurrence. Losses were also negatively associated with high seasonality, but the response was delayed by 3 years.Main conclusionsEnvironmental conditions play a role in species occupancy across diverse temperate marine ecosystems. Immediate gains paired with delayed losses can drive transient increases in species richness during times of environmental change. Identifying the dynamics behind regional species gains and losses is an important step towards prediction of biodiversity changes across ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call