Abstract

Soil organic carbon (SOC) sequestration provides an opportunity to mitigate climate change impacts, since soils are the largest store of terrestrial carbon. Accurate estimates of SOC content across landscapes are therefore important to monitor and manage efficiently these SOC stocks. Mid-infrared (MIR) spectroscopy has been increasingly applied as a rapid, cost-effective, and accurate method for predictive soil analysis. This study assessed the performance of MIR spectroscopy for SOC prediction at a regional scale in the Indo-Gangetic plains, 280 soil samples were collected covering Inceptisols, Entisols and Alfisols and their spectra recorded. Five preprocessing techniques ((absorbance, multiplicative scatter correction (MSC), standard normal variate (SNV), Savitzky–Golay smoothing first derivative (SG-FD) and Savitzky–Golay smoothing second derivative (SG-SD)) and four multivariate methods (partial least-squares regression (PLSR), random forest (RF), support vector regression (SVR) and multivariate adaptive regression splines (MARS)) were evaluated to predict SOC from MIR spectra. The considerable prediction accuracy and robustness were achieved using the PLSR model (RV2 = 0.78, RMSEV = 0.04, and RPDV = 2.07), RF model (RV2 = 0.65, RMSEV = 0.09, and RPDV = 1.01), SVR model (RV2 = 0.65, RMSEV = 0.09, and RPDV = 1.12), and MARS model (RV2 = 0.67, RMSEV = 0.09, and RPDV = 1.20). Findings from this study identified the reliability of SOC determinations by examining how preprocessing techniques and multivariate methods affect spectral analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.