Abstract

The geography of the East Pacific Rise (EPR) between 10°N and 6°S, redetermined by new surface ship surveys, is characterized by long spreading axes orthogonal to infrequent transform faults. Near 2°10′N the EPR is intersected by the Cocos-Nazca spreading center at the Galapagos triple junction. The present pattern was established 27-5.5 m.y.b.p. by a complex sequence of rise-crest jumps and reorientations from a section of the Pacific-Farallon plate boundary. Transverse profiles of the rise flanks can be matched by thermal contraction curves for aging lithosphere, except between the triple junction and 4°S, where the east flank is anomalously shallow and almost horizontal. Most sections of spreading axis have the 10–30 km wide, 100–400 m high, axial ridge that is characteristic of fast spreading centers. However, within 60 km of the triple junction the rise crest structure is atypical, with an axial rift valley and elevated rift mountains, despite a spreading rate of 140 mm/yr. With the exception of this atypical section, the bathymetric profile along the spreading axis is remarkably even, with continuous, gentle slopes for hundreds of kilometers between major transform faults, where step-like offsets in axial depths occur. Most of the observations can be accommodated by a model in which the long spreading axes are underlain by continuous crustal magma chambers that allow easy longitudinal flow of magma, and whose size controls the style and dimensions of EPR crestal topography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call