Abstract
Monitoring crop phenology is essential for evaluating crop productivity and crop management. Remote sensing provides an efficient way to monitor crop phenological metrics at a large-scale. However, the widely used AVHRR and MODIS images are less reliable at a small-scale and in areas with heterogeneous land covers, such as the patchy cropland in South Central China. Therefore, this study analyzed the spatial and temporal variations of winter wheat phenology in South Central China, using enhanced vegetation index (EVI) time series predicted by a spatio-temporal fusion method that combines information from Landsat and MODIS images. The 13-year predicted EVI showed a close correspondence with the EVI derived from original Landsat images. Start of season (SOS), peak greenness, and end of season (EOS) were derived from the predicted EVI time series. The comparison with ground observations showed that the differences between the predicted phenological metrics and observations were usually within seven days. The length of the growing season demonstrated high spatial heterogeneity over the study area and the spatial patterns varied from year to year. The phenological dates did not show obvious increasing or decreasing trends through 13 years. The length of the growing season in the study area was positively correlated with precipitation, but the duration from SOS to peak greenness and the duration from peak greenness to EOS were strongly and negatively correlated with hours of sunshine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.