Abstract

The issue of urban air quality in China has become increasingly significant due to industrialization and rapid urbanization. Although PM2.5 is the major air pollutant in most cities of northern China and has a direct negative impact on human health, there is a problem of under-representativeness at Chinese monitoring stations. In some cities, due to the relatively fewer national control stations and the fact that the stations are located closer to pollution sources, under the current assessment system, the monitoring data are not sufficient for the fairness of air quality assessment in different cities. In this article, the multispectral data of Landsat 8 data, air quality data, and meteorological data from ground monitoring stations have been integrated together and imported to different PM2.5-estimation models established based on the multi-layer back propagation neural network (MLBPN), support vector regression (SVR), and random forest (RF), respectively. According to the evaluation indices of R2, RMSE, and ME, the estimation model based on the MLBPN revealed the best PM2.5 estimation results and was therefore employed for the regional representativeness analysis in the study area of Xi’an, Shaanxi, China. The annual average PM2.5 concentration in the study area is depicted after error correction using Kriging interpolation, which can be further used to evaluate and analyze the representativeness of monitoring stations in Xi’an. By calculating the difference between the actual station annual average and the annual average of estimated PM2.5 concentration in the whole region, it can be found that the regional annual average value of PM2.5 in Xi’an is overestimated. To sum up, this article proposes a feasible method for the spatial positioning of the air quality monitoring stations to be established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call