Abstract

Accurate measurement and determination of the state of the ionosphere has become a key point as ground-based communication systems become more space dependent. However, due to limited infrastructure, a number of global models have been developed with extensive interpolation techniques to comprehensively describe ionospheric dynamics. As a result, most global models do not perform adequately in regions with a paucity of ionospheric measurements. In this paper, the most recent International Reference Ionosphere (IRI-2012) model output, Total Electron Content (TEC) and F2 layer critical frequency (foF2), are optimized (over a range of 120 ° E–150 ° E and 20 ° N–50 ° N in longitude and latitude, respectively). To obtain the optimal solution, we adjust two input parameters, the 12-month running mean sun spot number (R12) and the ionospheric index (IG12), in relation to the derived Global Positioning System (GPS) vertical TEC (VTEC). The results are compared to the measured TEC and foF2 from GPS receivers and ionosondes, respectively. The analysis shows that the modified IRI-2012 model is more accurate at estimating both the TEC and the foF2 values than the original model during days of geomagnetic quiet and disturbance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call